|  | EGE (AU EGREE E ORT SEMES ORDINAR | NNAI - 600034 MATICS <br> ATIONS |
| :---: | :---: | :---: |
| Date: 05-11-2011 <br> Time : 1:00-4:00 | Dept. No. | Max. : 100 Marks |

Answer all questions. Each question carries 20 marks.

1. (a) Prove that $x(t)=x_{p}(t)+x_{h}(t)$ is the general solution of $L(x(t))=d(t)$ on $I$ where $x_{p}(t)$ is any particular solution of $L(x(t))=d(t)$ and $x_{h}(t)$ is the general solution of the homogeneous equation $L(x(t))=0$.
(OR)
(b) Prove that $x=c t^{2}+t+3, t \geq 0$, is a solution of $t^{2} x^{\prime \prime}-2 t x^{\prime}+2 x=6$.
(c) Prove that $u L(v)-v L(u)=a_{0}(t) \frac{d}{d t} W[u, v]+a_{1}(t) W[u, v]$, where $u, v$ are twice differentiable functions and $a_{0}, a_{1}$ are continuous on $I$. Also deduce Abel's formula.
(15)
(OR)
(d) By the method of variation of parameters, find the general solution of $x^{\prime \prime \prime}(t)-x^{\prime}(t)=$ cost.
2. (a) i) Find the indicial equation of $2 x \frac{a^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$.
(OR)
(b) Whenever n is an integer, positive or negative, show that $I_{-n}(X)=(-1)^{n} J_{n}(X)$.
(c) Solve by Frobenius method, $x(1-x) \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}-y=0$.
(OR)
(d) Solve the Legendre's equation, $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+l(l+1) y=0$.
3. (a) Show that the explicit expression for the legendre polynomials (1) $P_{i}(-1)=(-1)^{2}$ and (2) $P_{l}^{\prime}(1)=\frac{1}{2} l(l+1)$.
(OR)
(b) Show that $\mathrm{F}(1 ; \mathrm{p} ; \mathrm{p} ; \mathrm{x})=1 /(1-\mathrm{x})$.
(c) State and prove Rodriguez's Formula and find the value of $\left\{8 P_{4}(x)+20 P_{2}(x)+7 P_{0}(x)\right\}$.
(OR)
(d) Solve the Bessel's equation, $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$
4. (a) Prove that all the eigen values of Strum - Liouville problem are real.
(b) Find the eigen values and eigen functions of $x^{\prime \prime}+\lambda x=0, x(0)=0, x^{\prime}(\pi)=0$.
(c) State and prove Picard's theorem for initial value problem.
(OR)
(d) State Green's function. Prove that $x(t)$ is a solution of $L(x(t))+f(t)=0, a \leq t \leq b$ if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$.
5. (a) Prove that the null solution of the system $x^{\prime}=A(t) x$ is asymptotically stable if and only if $|\phi(t)| \rightarrow 0$ as $t \rightarrow \infty$.
(OR)
(b) Let a function $V(t, x)$ exist such that $V(t, 0)=0$ for $t \in I, V(t, x)$ is bounded, first order partial derivatives of $V$ with respect to $x_{i}(i=1,2 \ldots n)$ are continuous on $I \times S_{\rho}, V(t, x)$ is positive definite and $\dot{V}(t, x) \leq 0$. Prove that $x^{\prime}=f(t, x), t \geq t_{0} \geq 0$ is stable.
(c) Discuss the stability of autonomous systems.
(OR)
(d) By Lyapunov direct method, discuss the stability of $x^{\prime}=A x$.
